
 Page | 1

INFO 6205 Program Structure and Algorithms

Course Information
Course Title: Program Structure and Algorithms
Course Number: INFO 6205
Term and Year: Spring 2022
Credit Hour: 4
Course Format: On-Ground

Instructor Information
Full Name: Robin Hillyard
Email Address: r.hillyard@northeastern.edu

Course Prerequisites
Graduate level INFO 5100 Minimum Grade of B- or Graduate level CSYE 6200 Minimum Grade of B-

Course Description
Presents data structures and related algorithms, beginning with a brief review of dynamic memory allocation.
Discusses the fundamental data structures in detail, including the abstract representation, supporting
algorithms, and implementation methods. Focuses on understanding the application of the abstract data
structure and the circumstances that affect implementation decisions. Covers lists, stacks, queues, trees, hash
tables, and graphs. Covers recursion and searching and sorting algorithms in detail. Emphasizes data abstraction
and encapsulation in code design. Explores external storage structures, time permitting.

Standard Learning Outcomes

Learning outcomes common to all College of Engineering Graduate programs:
1. An ability to identify, formulate, and solve complex engineering problems.

2. An ability to explain and apply engineering design principles, as appropriate to the program’s

educational objectives.

3. An ability to produce solutions that meet specified end-user needs with consideration of public health,

safety, and welfare, as well as global, cultural, social, environmental, and economic factors.

The Information Systems Program accepts students of different engineering backgrounds with minimum
programming skills and produces first class Information Systems engineers that operate at the intersection of
real-world complexity, software development, and IT management. Graduating students will be able to construct
end-to-end advanced software applications that meet business needs.

Specific Learning Outcomes for the Information Systems program:

1. Create a strong technical foundation through diverse, high-level courses

2. Built crucial interpersonal skills needed to succeed in any industry

mailto:r.hillyard@northeastern.edu

 Page | 2

3. Foster a deep level of applied learning through project based case studies

Course Outcomes:

1. Develop an approach to problem-solving.
2. Utilize different strategies to develop and improve various algorithms.
3. Articulate the relationship between data structures, algorithms, and invariants.
4. Choose the most effective utility (e.g., quicksort) for a particular programming task.
5. Prepare for a coding interview.

Required Materials:
• Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne, Addison-Wesley Professional, 2011, ISBN

9780321573513

• Java Integrated Development Environment: here are installation instructions

• (Optional) Algorithms, Dasgupta, Papadimitriou and Vazirani, McGraw-Hill Higher Education, 2008, ISBN
9780073523408

What is this class all about?

• Mostly it’s about solving problems by computer.

• You will learn about data structures, the rules that govern them (invariants), and the algorithms that
operate on them.

• We will take a practical approach, that’s to say we will treat the subject matter with an “engineering”
mindset.

• We will get a little mathematical where it’s appropriate because the foundation of everything we cover
is, essentially, mathematics.

Search Problems
• Most of the problems we set out to solve will be “search problems.”

• In computer science terminology, a search problem is one where we will look for a solution within a
potentially vast search space until we find one which satisfies our criteria.

• An example would be sorting: the solution we seek is one where all of the elements are in some
predefined order.

Of course, this is just an idealized way of classifying these problems—we are usually a lot smarter than that.

Practicalities

The implementation language of this online version of the class is Java (8 or later). The subject material
should ideally be independent of any particular language. But for practical reasons, we use Java. Examples
and assignments are found in the github repository: https://github.com/rchillyard/INFO6205 (Java
classes only).

Module 1: Solving Problems: The Use of Data Structures, Algorithms, and Invariants

Module Overview

In this module, we will explore the nature of the kinds of problems we can solve using computers. We will
learn about different strategies for solving these problems: identifying invariants, using brute force, dividing
or simplifying the problem into easier problems, and taking advantage of any existing order.

 Page | 3

Learning Objectives
By the end of this module, you will be able to do the following:

• Develop techniques for solving problems.

• Detect invariants when solving problems.

• Apply the concept of reduction at an elementary level.

• Prove a recurrence relation by mathematical induction.

• Sort a small array using insertion sort.

• Identify a “search problem,” and show how a dictionary saves time.

Reading and Resources

Required Resources Description
Sedgewick/Wayne, Algorithms 4/e, 6.
Context, section “Reduction”, pages 903-9

This section explores the concept of reduction in more
detail.

IntelliJ IDEA Install the latest community edition.

https://github.com/rchillyard/INFO6205 Clone the repository and run
edu.neu.coe.info6205.sort.simple.InsertionSortTest.
Study the insertion sort method being tested.

Optional Resources Description
https://youtu.be/ROalU379l3U Insert-sort with Romanian folk dance

Dasgupta, Papadimitriou, Vazirani,
Algorithms; McGraw-Hill, 2008, ISBN: 978-
0-07-352340-8

Chapter 1. This book is really an excellent book about
algorithms. The style is very different from Sedgewick and
Wayne. And it’s a relatively light-weight paperback.

https://youtu.be/QvuQH4_05LI ThreeBlueOneBrown on Problem-solving

 Module Content and Tasks

Title: 1.1 Solving Puzzles
Lesson Description: In this lesson, we will take a look at strategies for solving problems and puzzles by
computer - with special emphasis on the concept of invariants.

Title: 1.2 Recursion and Reduction
Lesson Description: In this lesson we take an early look at the concept of reduction, which is fundamental to
the efficient solution of most computer problems. And, we examine one of the most common strategies for
implementing such solutions: recursion.

Title: 1.3 Search Problems
Lesson Description: We learn some definitions in this lesson, including that of a search problem.

Title: 1.4 Sorting
Type: Embedded Slideshow or link to PowerPoint file
Lesson Description: This lesson introduces sorting using insertion sort as an exemplar.

 Page | 4

Module 2: Complexity

Module Overview

In order to understand the behavior and thus the cost of running algorithms, it is important to be able to place
bounds on the efficacy of a solution or the difficulty of a problem. These are the roles of the Big O and Big Omega
functions respectively. So, we will develop polynomial functions of N, the size of a problem.

Because these functions usually involve logarithms, we will start with an in-depth look at logarithms. Next, we
must recognize that the time to solve a problem may have as much to do with its memory requirements as the
number of instructions executed. But, we must recognize that predicting the behavior from a theoretical
viewpoint is likely to be at best an approximation. To really understand, we must benchmark our algorithms, and
prior to that, test them. Finally, coming full-circle to the minimum complexity of the problem itself, we need some
way to estimate that complexity--and for that we will learn about information entropy.

Learning Objectives
By the end of this module, you will be able to do the following:

• Plan how to plant 10 trees & design a 10-stage rocket.

• Use an understanding of memory and processor cycles to improve running time.

• Time and test the performance of an algorithm.

• Classify problems according to their “order of growth.”

• Estimate the entropy of a search problem.

Reading and Resources

Required Resources Description
Sedgewick/Wayne, Algorithms 4/e, 1
Fundamentals, 1.4 Analysis of Algorithms

Analysis of Algorithms. This goes into much more detail on
this topic.

Optional Resources Description
Dasgupta, Papadimitriou, Vazirani,
Algorithms; McGraw-Hill, 2008, ISBN: 978-
0-07-352340-8

Section 0.3 Big-O notation

https://youtu.be/v4cd1O4zkGw Hacker Rank on Big-O notation (some cute graphics) 8:30

https://youtu.be/4PDoT7jtxmw 2Blue1Brown on Natural Logarithms. Good but long.
Definitely optional.

Module Content and Tasks
Title: 2.1 Logarithms
Lesson Description: A detailed look at the logarithm function--the importance of which cannot be
overemphasized.

 Page | 5

Title: 2.2 Space vs Time
Lesson Description: Where does all the time go? This lesson looks at both our natural enemies: large numbers of
instruction cycles and large numbers of memory accesses. Which is worse? The answer may surprise you.

Title: 2.3 Benchmarking and Test-Driven Development
Lesson Description: For any serious study of the behavior of an algorithm, it’s important to understand as much as
possible about the mathematical basis of the solution. However, it’s even more important to back this up with
benchmarking--and of course testing. As we’ll see in this lesson, no change should ever be made to optimize
software without both testing and benchmarking the result.

Title: 2.4 Asymptotic Notation
Lesson Description: In this lesson, we will look at--and try to understand--the important concepts of Big-O, Big-
Omega, and their relatives.

Title: 2.5 Entropy
Lesson Description: No study of problem solving and its mathematical analysis can be complete without an
understanding of the root cause of the complexity: entropy. Understanding entropy can help us determine the
theoretically best possible solution.

Module 3: Abstract Data Types, Arrays, Objects, and Primitives

Module Overview

In this module, we introduce the concept of an abstract data type--that’s to say a pluggable component which can
be employed by an application. We introduce stacks (which you are probably already familiar with), queues, bags,
etc.

Learning Objectives
• Explain why an array is an important data structure.

• Initialize and maintain an array of objects or primitives.

• Design a simple data structure.

• Define an API.

• Design and use a linked list/stack.

• Design and use a bag.

• Design and use both a regular queue and a priority queue.

• Differentiate between an object reference and a primitive.

Reading and Resources

Required Resources Description
Sedgewick/Wayne, Algorithms 4/e, 1.
Fundamentals: 1.2 Data Abstraction.

This chapter explores data abstraction in general.

 Page | 6

Sedgewick/Wayne, Algorithms 4/e, 1.
Fundamentals: 1.3 Bags, Stacks and
Queues.

This chapter explores the abstract data types: bags, stacks
and queues.

Module Content and Tasks
Title: 3.1 Abstract Data Types
Lesson Description: We will learn about the importance of the abstract data type as a component of applications.

Title: 3.2 LinkedList/Stack
Lesson Description: The first ADT we study is perhaps the most familiar: the linked list. We will learn how the stack
is essentially the same thing but which presents a different application programming interface.

Title: 3.3 Bag
Lesson Description: This lesson introduces the lesser-known but extremely important ADT called the Bag.

Title: 3.4 Queue
Lesson Description: The double-ended queue (or deque) is also a very important ADT. Like its counterpart in normal
life, it plays an essential role in matching supply with demand and ensuring that clients are served on a first-come
first-served basis.

Title: 3.5 Priority Queue
Lesson Description: A variation on the double-ended queue, the priority queue has surprisingly many applications,
especially in the world of Big Data. Instead of serving on a first-come first-served basis, it serves the most important
(highest priority) first.

Title: 3.6 Objects vs Primitives in Java
Type: Embedded Slideshow or link to PowerPoint file
Lesson Description: All languages have their idiosyncrasies and Java is no exception. But, if you strive to write very
efficient code, you must understand distinctive aspects of the language covered in this lesson.

Module 4: Sorting, Shuffling & Selection

Module Overview

The “Dictionary principle” allows us to speed up searching, providing that we have an efficient method of sorting.
Sorting comprises a large proportion of this course because it is so important. We cover all of the most important
sorting algorithms here, leaving a few of the more advanced ones to Module 8. Additionally, we look at shuffling, or
un-sorting, and selection, which essentially is finding the kth element of a collection,
without having to sort it first.

Learning Objectives
By the end of this module, you will be able to do the following:

• Code a typical comparison method for a class of objects and describe the ways by which objects may be
compared.

• Enumerate the rules of total order.

 Page | 7

• Code selection sort and describe its complexity.

• Code shell sort and describe its complexity.

• Code merge sort and describe its complexity.

• Code quicksort and describe its complexity.

• Code heap sort and describe its complexity.

• Describe the complexity of QuickSelect.

• Code the Knuth shuffle and describe its complexity.

Reading and Resources

Required Resources Description
Sedgewick/Wayne, Algorithms 4/e, 2 Sorting, 2.1

Elementary Sort
This section provide details description and analysis of

elementary sort.

Sedgewick/Wayne, Algorithms 4/e, 2 Sorting, 2.2
Merge sort

This section focuses on Merge sort and various approaches
of merge sort.

Sedgewick/Wayne, Algorithms 4/e, 2
Sorting, 2.3 Quicksort

This section explains multiple partitioning techniques and
quicksort.

Optional Resources Description
https://www.toptal.com/developers/sorti
ng-algorithms

This page shows visualization of multiple sorting
algorithms.

http://me.dt.in.th/page/Quicksort/#disqus
_thread

In-depth discussion of quicksort.

https://youtu.be/lyZQPjUT5B4 Bubble Sort by folk dance.

https://youtu.be/CmPA7zE8mx0 Shell Sort by folk dance using gaps of 5, 3, 1.

https://youtu.be/XaqR3G_NVoo Merge Sort by folk dance.

https://youtu.be/ywWBy6J5gz8 Quicksort by folk dance.

Module Content and Tasks
Title: 4.1 Comparison Sorts
Lesson Description: General introduction to comparison sorts, invariants, and swaps.

Title: 4.2 Selection Sort
Lesson Description: Description of selection sort

Title: 4.3 Shell Sort
Lesson Description: Description of shell sort: how to reduce the number of inversions before sorting

Title: 4.4 Merge Sort
Lesson Description: Divide and conquer-based sorting: Merge sort

Title: 4.5 Quicksort
Lesson Description: Divide and conquer-based sorting: Quicksort

http://www.toptal.com/developers/sorti
http://me.dt.in.th/page/Quicksort/#disqus

 Page | 8

Title: 4.6 Heap Sort
Lesson Description: Binary heaps and heap sort.

Title: 4.7 Quickselect
Lesson Description: Order statistics without getting a complete order.

Title: 4.8 Shuffling
Lesson Description: Shuffling – the opposite of sorting.

Module Summary Chart

Title: Module 4 Interactive Flowchart for Choosing a Sort Algorithm
URL: https://drive.google.com/file/d/1e5DGj9xhwppriiCNqAxPs9QWQmbK-AlQ/view?usp=sharing

Module 5: Searching

Module Overview
Information retrieval is one of the most important tasks for computers. How can we store information in such a way
that retrieval of the information is fast and uses as little memory as is reasonably possible? How do we deal with objects
that we can compare and objects that we cannot compare? How do we retrieve information when getting a block of
data is extremely slow (as with a hard disk, or a network lookup, for instance)? These questions are addressed in this
important module.

Learning Objectives
By the end of this module, you will be able to do the following:

• Code binary search and describe its complexity.
• Analyze the performance of a binary search tree.
• Differentiate the 2-3 tree from the left-leaning red-black tree.
• Identify situations for which a B-tree search is applicable, and state the advantages of that search.
• Discuss the required features of a hash function for searching.
• Code and analyze separate chaining.
• Code and analyze open addressing.

Reading and Resources

Required Resources Description
Sedgewick/Wayne, Algorithms 4/e,
sections 3.1, 3.2, 3.3, 3.4 (pages 362-485)

A key value pair data structure introduction

Sedgewick/Wayne, Algorithms 4/e,
sections 3.2

Detailed description of Binary search tree and its applications

Sedgewick/Wayne, Algorithms 4/e,
sections 3.3, 3.4

Balanced Search Tree, Hash Table

 Page | 9

Optional Resources Description
Sedgewick/Wayne, Algorithms 4/e,
sections 3.5 (pages 486-513)

Applications of Searching

Sedgewick/Wayne, Algorithms 4/e, pages
866-874

B-trees

Module Content and Tasks

Title: 5.1 Introduction to Searching
Lesson Description: Searching basics: lists, arrays.

Title: 5.2 Binary Search Trees
Lesson Description: How an extra degree of freedom can allow us to efficiently store and retrieve keys.

Title: 5.3 Balanced Search Trees
Lesson Description: Adding another degree of freedom to allow us to balance a search tree.

Title: 5.4 B-Trees
Lesson Description: Extending the concept of balanced trees.

Title: 5.5 Hash Functions
Lesson Description: How to get the benefits of an array with generalized keys.

Title: 5.6 Separate Chaining
Lesson Description: Chaining: the simplest implementation of a hash table.

Title: 5.7 Open Addressing
Lesson Description: Also known as linear probing, a slightly more efficient hash table if it’s well managed.

Module Summary Chart

Title: Module 5 Interactive Flowchart for Choosing an ADT for Search
Type: Interactive Learning Object
URL: https://drive.google.com/file/d/1Pu2XiHH_rjKu1iMzi19jQovBEiFw_u1_/view?usp=sharing

Module 6: Compression

Module Overview
Space (memory) can be as important as the number of instructions when it comes to the performance of algorithms.
Compressing data for transmission over a network, for instance, can make a significant difference in the time taken for
messages to be passed. We will look in detail only at Huffman coding, but the textbook also covers run-length encoding.

 Page | 10

Learning Objectives
By the end of this module, you will be able to do the following:

• Describe the role of compression algorithms in data storage, communication, and processing.
• Encode and decode by Huffman coding.

Reading and Resources

Required Resources Description
Sedgewick/Wayne, Algorithms 4/e, 5.5
Data Compression, pages 826-839

These pages explore Huffman Coding and Tries.

Optional Resources Description
Sedgewick/Wayne, Algorithms 4/e, 5.5
Data Compression, pages 810-850

This section additionally explores Run-length Encoding and
LZW Compression.

Module Content and Tasks
Title: 6.1 Huffman Codes
Lesson Description: Message compression by Huffman coding.

Module 7: Graphs and Trees

Module Overview
This module covers those aspects of graph theory suitable for a general course such as INFO6205. Graphs are
increasingly important data structures for the modern world and, because graphs tend to be very large in terms of
the numbers of edges, it is extremely important to design efficient algorithms.

Learning Objectives
By the end of this module, you will be able to do the following:

• Describe the importance and applications of graphs and trees.
• Differentiate between a tree and a graph which is not a tree.
• Code and analyze depth-first and breadth-first traversal of trees and graphs.
• Differentiate between undirected and directed graphs.
• Design data structures for undirected and directed graphs.
• Explain how the connected components algorithm is used to compute connected components for a given

graph.
• Code and analyze Kosaraju’s algorithm.
• Code and analyze Dijkstra’s algorithm.

Reading and Resources

Required Resources Description
Sedgewick/Wayne, Algorithms 4/e, Chapter 4,
Graphs: pages 514-693

These chapters explore everything about graphs.

https://www.maa.org/press/periodicals/co
nvergence/leonard-eulers-solution-to-the-
konigsberg-bridge-problem

The Seven Bridges of Königsberg

http://www.maa.org/press/periodicals/co

 Page | 11

Optional Resources Description
http://www1.coe.neu.edu/~rhillyard/Tunn
el%20article.pdf

Application of Kruskal’s algorithm--part of lesson 7.5

https://tinkerpop.apache.org Apache Tinker Pop Graph Computing Framework

Module Content and Tasks

Title: 7.1 Introduction to Trees and Graphs
Lesson Description: General description of trees and graphs.

Title: 7.2 Depth-first vs Breadth-first
Lesson Description: The two primary strategies for traversing graphs and trees.

Title: 7.3 Undirected and Directed Graphs
Lesson Description: Graph properties and algorithms.

Title: 7.4 Connected and Strong Components
Lesson Description: Connectivity in graphs – undirected and directed.

Title: 7.5 Minimum Spanning Trees
Lesson Description: How to define a minimum spanning tree.

Title: Kruskal’s Algorithm, NEU Tunnel System
Type: Explainer Video

Title: 7.6 Shortest Paths
Lesson Description: Calculating the shortest path(s) from A to B using Dijkstra’s algorithm.

Module 8: Advanced Sorts

Module Overview
This module covers advanced sorts--mostly sorts that either don’t use comparison at all or, if they do, use it in
some hybrid algorithm. Module 8 also introduces the Group Project.

Learning Objectives
By the end of this module, you will be able to do the following:

• Code and analyze pre-sorting algorithms.
• Code and analyze non-comparison-based sorting.
• Demonstrate teamwork and cooperation skills.

http://www1.coe.neu.edu/~rhillyard/Tunn

 Page | 12

Task List
• Lesson 8.1 Intro Video, lesson content, and Check Your Knowledge
• Lesson 8.2 Intro Video, lesson content, and Check Your Knowledge
• Coding Assignment
• Summary Video
• Start Team Project

Module Content and Tasks

Title: 8.1 Bucket Sort and Husky Sort
Lesson Description: Hybrid sorts

Title: 8.2 Radix Sorts
Lesson Description: non-comparison sorts.

Module 9: Finite Automata & Classifying Search Problems

Module Overview

This module covers some advanced theoretical topics that don’t fit neatly into any of the other modules.

Learning Objective
By the end of this module, you will be able to do the following:

• Code and use regular expressions.
• Understand the relationship between regular expressions and finite automata.
• Distinguish between P, NP, etc.
• Demonstrate teamwork and cooperation skills.

Reading and Resources

Required Resources Description
Sedgewick/Wayne, Algorithms 4/e, 5.4 Regular
Expressions, pages 788-809

These pages explore Regular Expressions, as well as
deterministic and non-deterministic finite automata..

Sedgewick/Wayne, Algorithms 4/e, Reduction,
pages 903-921

Reduction, Intractability

Module Content and Tasks

Lesson 9.1
Title: Regular Expressions
Lesson Description: Finite State Machines and their application to parsing.

Lesson 9.2

Title: DFAs and NFAs
Lesson Description: Deterministic and non-deterministic finite automata

 Page | 13

Lesson 9.3
Title: Classifying Search Problems
Lesson Description: P and NP

Project and Optional Module 10: Advanced Problem Solving

Module Overview
This module covers specialized topics that are not treated in standard textbooks but which you should have at least
some knowledge about.

Learning Objectives
By the end of this module, you will be able to do the following:

• Design a non-deterministic algorithm for solving an NP-complete problem.
• Differentiate between greedy algorithms and dynamic programming.
• Demonstrate teamwork and cooperation skills.

Reading and Resources

Required Resources Description
Sedgewick/Wayne, Algorithms 4/e, pages
tk

These chapters explore .

Module Content and Tasks

Lesson 10.1
Title: Non-deterministic Programming
Lesson Description: Introduction to Genetic Algorithms

Lesson 10.2

Title: Dynamic Programming
Lesson Description: A quick look at dynamic programming

Module 11: Guide to Interviews

Module Overview
This module does not directly relate to anything in the textbook, nor will it appear in the final exam. Interviews for
software development positions have become harder and more competitive in recent decades. Gone are the days
when the interviewer would ask just one or two softball questions about languages you claimed to know. In short,
you are expected to apply everything you learned in this course during an intense verbal examination that might
last an hour. There is no substitute for practice. The more you solve internet problems, the more comfortable you
will be under pressure. This module gives you a few pointers to help you when the moment comes.

 Page | 14

Learning Objectives
By the end of this module, you will be able to do the following:

• Conduct an appropriate coding interview.
• Debug your own programs.
• Apply problem-solving skills to a coding case study.
• Demonstrate teamwork and cooperation skills.

Reading and Resources

Required Resources Description
None

Optional Resources Description
https://www.amazon.com/dp/098478

2850/ref=cm_sw_em_r_mt_dp_U_2f

dhFbEWAE53S

Cracking the Coding Interview by Gayle Laakman McDowell

https://medium.com/@AndyyHope/softw are-
engineering-interviews-744380f4f2af

Excellent article on preparing for interviews at companies
like Facebook.

https://en.wikipedia.org/wiki/The_Hitchhi
ker's_Guide_to_the_Galaxy

The increasingly inaccurately described Hitchhikers’
trilogy.
The cover of the book is DON’T PANIC

Module Content and Tasks

Lesson 11.1
Title: DON’T PANIC
Lesson Description: The Hitchhiker’s Guide to Interviews 11.1

Module 12: Final Exam & Submit Team Project

End-of-Course Evaluation Surveys
Your feedback regarding your educational experience in this class is very important to the College of
Professional Studies. Your comments will make a difference in the future planning and presentation of our
curriculum.

At the end of this course, please take the time to complete the evaluation survey at
https://neu.evaluationkit.com. Your survey responses are completely anonymous and confidential. For
courses 6 weeks in length or shorter, surveys will be open one week prior to the end of the courses; for courses
greater than 6 weeks in length, surveys will be open for two weeks. An email will be sent to your HuskyMail
account notifying you when surveys are available.

Title: Interview Case Studies
Lesson Description: A look at one or two example problems

Lesson 11.2

http://www.amazon.com/dp/098478
https://medium.com/%40AndyyHope/softw
https://neu.evaluationkit.com/

 Page | 15

Academic Integrity
A commitment to the principles of academic integrity is essential to the mission of Northeastern University. The
promotion of independent and original scholarship ensures that students derive the most from their educational
experience and their pursuit of knowledge. Academic dishonesty violates the most fundamental values of an
intellectual community and undermines the achievements of the entire University.

As members of the academic community, students must become familiar with their rights and responsibilities. In
each course, they are responsible for knowing the requirements and restrictions regarding research and writing,
examinations of whatever kind, collaborative work, the use of study aids, the appropriateness of assistance, and

other issues. Students are responsible for learning the conventions of documentation and acknowledgment of sources in
their fields. Northeastern University expects students to complete all examinations, tests, papers, creative projects, and

assignments of any kind according to the highest ethical standards, as set forth either explicitly or implicitly in
this Code or by the direction of instructors.

Go to http://www.northeastern.edu/osccr/academic-integrity-policy/ to access the full academic integrity
policy.

Student Accommodations
Northeastern University and the Disability Resource Center (DRC) are committed to providing disability services
that enable students who qualify under Section 504 of the Rehabilitation Act and the Americans with Disabilities
Act Amendments Act (ADAAA) to participate fully in the activities of the university. To receive accommodations
through the DRC, students must provide appropriate documentation that demonstrates a current substantially

limiting disability.

For more information, visit http://www.northeastern.edu/drc/getting-started-with-the-drc/.

Library Services
The Northeastern University Library is at the hub of campus intellectual life. Resources include over 900,000
print volumes, 206,500 e-books, and 70,225 electronic journals.

For more information and for Education specific resources, visit http://subjectguides.lib.neu.edu/edresearch.

24/7 Blackboard Technical Help
For immediate technical support for Blackboard, call 617-373-4357 or emailhelp@northeastern.edu

Within Blackboard, open a support case via the red support button on the right side of the screen, click Create
Case

myNortheastern, e-mail, and basic technical support
Visit the Information Technology Services (ITS) Support Portal
Email: help@northeastern.edu
ITS Customer Service Desk: 617-373-4357

http://www.northeastern.edu/osccr/academic-integrity-policy/
http://www.northeastern.edu/drc/getting-started-with-the-drc/
http://subjectguides.lib.neu.edu/edresearch
mailto:help@northeastern.edu
https://northeastern.service-now.com/sp/
mailto:help@northeastern.edu

 Page | 16

Diversity and Inclusion
Northeastern University is committed to equal opportunity, affirmative action, diversity and social justice while
building a climate of inclusion on and beyond campus. In the classroom, member of the University community
work to cultivate an inclusive environment that denounces discrimination through innovation, collaboration and
an awareness of global perspectives on social justice.

Please visit http://www.northeastern.edu/oidi/ for complete information on Diversity and Inclusion

TITLE IX
Title IX of the Education Amendments of 1972 protects individuals from sex or gender-based discrimination,
including discrimination based on gender-identity, in educational programs and activities that receive federal
financial assistance.

Northeastern’s Title IX Policy prohibits Prohibited Offenses, which are defined as sexual harassment, sexual
assault, relationship or domestic violence, and stalking. The Title IX Policy applies to the entire community,
including male, female, transgender students, faculty and staff.

In case of an emergency, please call 911.

Please visit www.northeastern.edu/titleix for a complete list of reporting options and resources both on- and
off-campus.

http://www.northeastern.edu/oidi/

